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I'll begin with these three areas:

1. Development of instability configurations

. The transition from unstable growth of these configurations

into turbulence and a description of the nature of that
turbulence

. The question of decay of turbulence and one of the most

controversial topics, the existence of what is called "fossil
turbulence."

People involved in design and simulation want simple descriptions of
turbulence that exists in the atmosphere and oceans, in these "clear-air"

conditions. That description is not going to be forthcoming at this time.
There are going to be all sorts of characteristics of these turbulent states.

And, I might add, that it is amusing that the oceanographers have the

advantage of us here. They are able to get in there and measure these things

better than we can in the atmosphere now, when it comes to accurate

measurements. And you want to keep your eye on what they are doing because a

lot of the information that we gain is going to come from them.

As far as the existence of unstable configurations goes, of course, the

vortex sheet has been known to be unstable for more than a century, but the
first actual computation, beyond the simple fact of instability, was that of

Rosenhead [1] in 1931 where he represented the vortex sheet as a sum of a lot

of little vortices (Figure 1), each of which is acting on the others. And, of

course, the vortex sheet is an equilibrium configuration until it is
disturbed, and then the little vortices tend to move each other until it winds

up in this familiar way. A lot of the literature refers to instability and/or

wave breaking. These are very confusing terms really because this type of
situation could conceivably be called a wave breaking. The next one (Figure

2) has totally different dynamics, namely, a wave on the surface of the ocean.

Here is a laboratory wave breaking in the surface of water (Figure 2a). The

dotted line is Longuet-Higgins' analytic solution to the problem [2]. Figure

2b is a picture from a surfing magazine which Longuet-Higgins picked up and

fit his theoretical profile precisely to the pictured profile [3].

We are in a position to understand both of the mechanisms illustrated in

Figure 2, even though they are quite different. The second one (Figure 2b) is
so familiar, of course--the degeneration of that instability into a turbulent

flow on the beach--that it may be surprising how little it has been studied.

There are many pictures such as Figure 3 that depict the configuration of

these roll-up type vortices in the atmosphere which have usually been

visualized by cloud patterns [4]. This one is just off the coast of
California. The atmosphere is known to have density differences like the

water wave and vorticity in the basic flow like that studied by Rosenhead [1],
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but in both of these cases the atmosphere has the variable continuously
distributed, rather than concentrated either in a vortex sheet or an interface
between the fluids of different densities. Attempts at simulation have been
made in the laboratory. Figure 4 is an early example of the fact that, if one
takes high resolution rather than the characteristic radiosonde resolution,
one can identify layers of low Richardson number in an overall stable layer
[5]. In this case, the resolution is only 400 m and the Richardson number
varies over four orders of magnitude and, of course, it can go to infinity as
the shear goes to zero. This has been well known. Wedo not know exactly how
these fine layers comeabout, but we can expect to find them.

In the laboratory, wave breaking can be represented, for example, in the
early work of Thorpe [6] a very clever device was used (Figure 5). This is
the two fluid system here and that is tilted so that you can get a shearing
across the interface and these little waves develop, break, mixing occurs, and
they die down. Thorpe suggested that the K-H mechanism looked like this.
Comparedto Rosenhead's calculation, Thorpe's work is in an earlier stage
because we are only looking qualitatively and not doing numerical work. In
Figure 6 we have the development of a roll-up. Then the next step is pure
arm-waving: the whole thing breaks down in somefashion. Quite recently, in
1983, McEwan[7], by use of a paddle, produced a breaking wave in the fluid
and was able to measurethe density gradient throughout. McEwan'sfigures are
in color and so cannot be reproduced here, but Figure 7 presents an
idealization of his results, which are as follows. The sequence of events is:

1. The rolling-up process produces an unstable density gradient,
heavy fluid over light.

. The breakdown of this convectively unstable region occurs on a

much smaller scale, permitting irreversible diffusion of density
and momentum.

. This microstructure persists after the restoration of gross

stability. The experiment shows that by this stage the motions

are three-dimenslonal. This stage is relatively long-lasting,
and is referred to by some authors (though not by McEwan) as
"fossil turbulence."

4. Finally, the stratified structure is reformed, although with a

slightly reduced mean density gradient in the mixed region.

This is one of the first demonstrations, even though quite recent, that the

breakdown is essentially three-dimensional in character. The sequence of

events is a little more clear than it was in Thorpe [6] but still not

numerical. In other words, we still have not gotten in there yet and measured

the character of the turbulent exchange which goes on between the breakdown of
an unstable situation and the final decay of the turbulence.

We now turn to another current research approach, that of numerical

simulation. This method has the great advantage of providing vast quantities
of accurate data. But there are compensating disadvantages: turbulence is

three-dimensional and involves a range of scales larger than non-turbulent

flows; as a result, true turbulence simulation requires, at present,

unconscionable amounts of time on the largest computers. Thus, it may be some
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years before numerical simulation answers the questions concerning CAT that
are being asked. However, progress is already evident.

In two articles, Klaassen and Peltier [8,9] have proceeded as follows.
Beginning with an unstable K-H wave, they integrated numerically with a
two-dimensional model. The expected roll-up occurs, bringing heavy fluid over
light, but no breakdown takes place. Rather, the system oscillates, energy
going back and forth between mean state and perturbation. Then, choosing a
time in this development, which is of course highly nonlinear, they subject
the given Configuration to a three-dimensional linear stability analysis. The
time development of the unstable wave is shown in Figure 8, the streamlines in
the top panels and potential temperature in the bottom panels. The results of
the stability analysis--which obviously requires extensive computation--are
shown in Figure 9. The growth rate of the fundamental modemo, at its maximum
value corresponds to a wavelength in the (longitudinal) y-direction of about
one-fourth the depth of the shear layer. If this maximumgrowth rate of this
mode is converted to dimensional values, it turns out to be approximately
equal to N, the Brunt frequency, showing that the breakdown is convective in
its dynamics.

People who are more operationally inclined may be very impatient with
these results. Of course, if you have heavy fluid over light fluid you expect
a gravitational instability to result! Nevertheless, these steps are

necessary in arriving at something that operationally concerned people will

want to see. This is as far as the Klaassen-Peltier model can go (since it is

not a simulation in itself, but the three-dimensional stability analysis of a

two-dimensional configuration derived from an earlier simulation). The next

step will presumably be a full-scale simulation of the turbulent breakdown,
with parameterization of eddies of less than a certain scale. This would be

the beginning of a quantitative characterization of the turbulence.

I will now proceed to discuss some of my own work, numerical simulations

of a very different kind: the flow of a stratified fluid--e.g., the

atmosphere--over an obstacle. This can be an obstacle on the ground, or an

obstacle at any elevation, of course. The terrain is a natural obstacle to
conceive of, but a frontal surface aloft could be the source of the

disturbance, or a cloud mass. We first take a simple linear analytic

solution. The wind is increasing linearly with elevation and the Brunt

frequency is constant. We consider a small disturbance (Figure lOa). Nh/Uo
is the parameter which traditionally is taken to govern the linearity of the

computation. If h is the height of the obstacle, the Brunt frequency is N,
and the speed of the fluid at the level of which it encounters the obtacle is

Uo. Here the ratio 0.1 suggests that it is a purely linear situation. And,

therefore, the analytic solution is valid. The next figure will show the

development of the Richardson number field from this particular streamline
field (Figure lOb).

Here we have cells corresponding to the cells of the streamline field. In

these cells, we have alternately Richardson number increases and decreases.
You will notice there are more contour lines in the increase than in the

decrease. In other words, the imposition of the gravity wave on the stable

fluid increases the stability of the fluid more than it decreases the

stability of the fluid. However, the fluid does have cells in which Ri

decreases, and the next figure will show what happens when we increase the
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magnitude of the disturbance. In Figure 11, Nh/Uo = 3, and now we can no
longer use the analytic solution; we have to use a simulation code. Again,
simulation meansstarting the motion from scratch and allowing the atmosphere
to flow over the obstacle. In Figure 11a the signal has only gone as far
downstream as the first crest. We see the streamlines are no longer
sinusoidal but are beginning to get nearly vertical at points. Figure 11b
shows the density field. So here we do get, not surprisingly, regions of
overturning. The point is: where the wave is trapped by the increasing
velocity, by the shear itself, the situation is so stabilized by that trapping
that the instability exists only in highly local regions at approximately the
height of the disturbance. Nothing terribly exciting can happen. You can get
a rotor cloud, but you cannot get the vast outbreaks of instability and
clear-air turbulence that are characteristic of certain situations. These two
figures have represented the type of thing that can develop when increases
with height in the atmosphere, therefore, providing a reflecting or trapping
mechanism. Wenow take a case, and this is one that has been studied more
than any in which the wind is constant and the stability is constant. The
analytic solution is by Miles and Huppert [10]. Figure 12 is a flow over an
ellipse where Nh/U = 0.5, a reasonably linear situation. Here is our
simulated solution of the same situation and this is a special simulation
code. I do not know of any other simulation in atmospheric sciences in which
an orthogonal grid is generated numerically in order for the disturbing
boundary to be a coordinate surface. The computation is then done with this
new grid preserving the character of the equations but with the new coordinate
surface and then transferring back into the old x,z system so that the ellipse
shows as an ellipse. You simply get waves in this linear case. However, if
the disturbing obstacle is increased in elevation, we get the pattern of
Figure 13, with one vertical streamline. Nh/U in this case is 0.93, the
critical value for this ellipse. Here we have simulation reproducing that
situation, and we do get that vertical streamline precisely. The second
vertical streamline, or almost vertical streamline, has lost some of its
energy because the energy is spreading out in two dimensions. But that is
simulated less well because the time is not long enough for the energy to
fully straighten up that streamline.

The fact is, of course, that in nature the wind is not constant with
height and the Brunt frequency is not constant with height. Either increasing
or decreasing wind is the rule. Wewill now go to the situation in which we
get a decreasinq wind. If you have a wind that is linearly decreasing, it

will eventually go through zero. This gives what is called a critical level;

it has been much studied, but less simulated; and it is a situation that is

highly productive of a nonlinear type of reflection. We have studied that

first by taking a simple sinusoidal disturbance. That is a monochromatic
disturbance; but the reflection from the critical layer produces many higher

frequencies.

In Figure 14, however, the disturbance generates all frequencies. The
left-hand panel represents the stream function; the mean flow is seen to
reverse directions at 10 km elevation, the critical level. Well below this,

at 6 to 8 km elevation, a reverse flow or rotor circulation is evident. The

density field (right-hand panel) exhibits similarly a reverse density

gradient. This would be a region of extreme turbulence. Note that almost no

disturbance penetrates above the critical level.
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However, it turns out that the existence of a critical level is not
necessary to produce this type of nonlinear reflection. Figure 15 represents
a similar result for a flow that decreases exponentially with elevation; in
the diagrammed panels, the mean flow exceeds I0 m/s at all levels. The
left-hand panel shows the total horizontal velocity. At elevations near 4 km,
the oncoming flow of 25 to 30 m/s has reversed itself to -25 m/s just in the
lee of the obstacle! The right-hand panel shows violent vertical updrafts and
downdrafts of more than 14 m/s within the horizontal distance of a few
kilometers. Again, a very turbulent region would result.

We conclude that the only thing necessary for the existence of a highly

reflective and potentially turbulent situation is a reasonably deep layer of

decreasing wind speed. (By decreasing I mean that it is lower at higher
levels than at lower levels.) This is fairly characteristic of the

stratosphere. So it suggests that the structure of the lowest stratosphere is

often extremely pregnant as far as clear-air turbulence is concerned. The

question is: Does the disturbance, which in these cases originates at the

surface of the earth, actually propagate sufficiently into the stratosphere to
produce this sort of turbulence? The answer is, sometimes it does and

sometimes it does not. And it is surprising how little this question has been

studied. It is what we in my group are devoting ourselves to now. To what

extent does the flow structure in the troposphere plus the tropopause itself
act as a barrier to gravity wave energy being propagated upward?

Figure 16 will show a situation in which this is the case. The simulation

used the best data we could get from Jack Ehernberger and others upwind of the
famous United Airlines episode over Hannibal in 1981 [11]. In this case,

there was quite a bit of damage and injury inside the plane. We tried as best

we could, but there is not any source of disturbance at the surface of the

earth near Hannibal. But even if we exaggerated the profile of the terrain

there, we could not propagate energy into the stratosphere. Nothing much
happened. However, there was an enormous cumulonimbus cloud bank, which was

really a very good two-dimensional obstacle to the flow at the time, and it

extended to about 9 km. We assume the cloud bank to be the obstacle; and it

was sufficient to produce this very large disturbance in the stratosphere.

From about 11 km up we had rapidly decreasing wind speed. The hatched areas

are areas of subcritical Richardson number. I believe the plane was flying at
about 13,000 feet.

The two approaches I have outlined present, I think, the present position

of our understanding. We understand how very stable atmospheric flows with

large Richardson numbers can be rendered unstable. We understand the process

of breakdown of this instability. We can watch the turbulence develop in the

laboratory and distinguish between an active stage and a "fossil" stage. But
we await detailed measurement and/or simulation of the turbulence.

I feel that this workshop was well conceived and should be repeated.
Perhaps by the time of the next one, the scientists will be able to answer the

questions asked by the engineers at this one.
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QUESTION: David Walker (Lehigh University). Could you say something about

your simulation. Is it an inviscid simulation? You don't have the no-slip
condition on the surface in those calculations? Is that correct? In those

obstacles, I would expect that you would get a structured kind of eddy

shedding off those obstacles that I didn't see in those results.

ANSWER: This is a completely inviscid model.

WALKER: The comment I would make is we've done a number of experiments

involving obstacles of that nature at Lehigh. What in fact you get is a

structured kind of hairpin vortex shedding off those kinds of obstacles that

penetrates after a while well up above the ground plane.

WURTELE: These are not intended to represent the flow in the immediate region
of the obstacle at all. In order to do that we would have to simulate the

whole atmospheric boundary layer and we haven't attempted to do that. Really
these solutions are valid at distances from the obstacle. Particularly it's

the vertical propagation we are concerned with here.
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(a) t = 0.00 x/u s

_(b) t = 0.25 _/U s

-_(c) t : 0.30 x/U s

-f__(d) t : 0.35 _/U s

_--_(e) t = 0.40 _/U s

0 0.5 1.0 1.5 2.0

= x/X

Figure 1. The rolling-up of a vortex sheet which has been given a
small sinusoidal displacement [I].
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( a )  Laboratory wave breaking 

( b )  Longuet-tiiggins [ Z ]  P3 s o l u t i o n  superimposed on a breaking wave 

Figure 2 .  Surface waves breaking,  with a n a l y t i c  s o l u t i o n s  o f  Longuet- 
Hi ggi ns [ 2,3] super i mposed . 
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Figure 3. Kelvin-Helmholtz wave roll-up configurations as detected in 
the atmosphere by FM-CW radar [4].  
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Richardson number 

A p r o f i l e  o f  g r a d i e n t  Richardson numbers i n  t h e  atmosphere 
deduced f rom radiosonde wind and temperature d a t a  averaged 
ove r  l a y e r s  about 400 m t h i c k .  

Figure 4. High-resolution prof i le  of Richardson number from Woods [SI. 
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The growth of disturbances i n  a f low with J = 0.077 t 0.01. Tbe t lw 
between each successive photograph is about 0.5 rec and the iength of 
the scale i s  45 cm. 

Figure 5. Breaking o f  unstable Kelvin-Helmholtz waves i n  the laboratory [ S j .  
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(g) (h)
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(i) (j)

The growth of disturbances: (a) the density p and velocity u distribu-

tions; (b) the lines mark a fluid of constant density, points A and B

are fixed, the arrows indicate the direction of flow; drawings (c) to

(j) show the development of instability. The points A and B remain

fixed, and the lines continue to mark a fluid of constant density.

Schematic of generation of turbulence from breaking of
unstable Kelvin-Helmholtz waves [6].

P_ (a)

P-t

(b)

(d)

Figure 7.

Idealization of a mixing event in a continuous stratification.

(a) Overturning. (b) Development of interleaving microstructure.

(c) Static stability is restored but microstructure is preserved.

(d) Gravitation to an equilibrium has changed the surrounding density

profile between extremum isopycnals. The disto/'tion of the profile is

exaggerated for clarity. The intermediate isopycnals (fourth and sixth

from the top) are displaced upwards and downwards respectively from

their original positions, representing a gain in stratification

potential energy.

Schematic of generation and decay of turbulence from breaking
of unstable K-H waves [7]. Stage (c) is sometimes called
"fossil turbulence."
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i i:iiiiiiiiiiiiiiiiiiiii iiiii!i....... (4)

(a) Streamlines (dashed) have been overlaid on (a) the isentropes (solid),
and (b) contours of the vorticity field (solid) illustrating evolution
of the KH wave at Re = 500. Numerals 1-6 refer to key times. Contour
intervals for the potential temperature field and streamfunction are
all Ae and A_, respectively. The contour intervals for the vorticity
field are A_for (2) and 2A_ for the remainder.

_ii:i i! :::iiiii_iiiii!i!iiiiiiiiii_i!ii!iiiiii!iiiii:iiiiiii!i!i!iii!i_ili

: : :: i: ;:i!!: iiii i iiiT !!!::::: i : iii: :i:_iiiii iii ::

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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? axO'<O
OxOkO

(31

(b) Sketches of potential temperature field illustrating baroclinic sources
and sinks of vorticity for a typical KH wave at key times (2) and (3)
in the energy cycle. Median contour interval has been shaded darkly;
regions with potential temperatures greater than the median value have
been shaded lightly. Regions of baroclinic generation of vorticity

(_x0' < O)are found in the braids; regions of baroclinic destruction
x > O) are found at the right and left edges of the core.

Figure 8. Roll-up of unstable Kelvin-Helmholtz waves in simulation by
Klaassen and Peltier [8]. Breakdown does not occur in two
dimensions.
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The growth rate o R and (b) angular frequency _ as functions of the spanwise
wavenumber d for various longitudinal (b = O) unstable modes of the Re =
500 KH wave at the key time (5) in its energy cycle. The sequency of modes
labeled _0..._4 (solid lines) is associated with the primary SAR, while that for
the _0'..._2' modes (dashed lines) is associated with the secondary SAR. The
truncation level used was the maximum N = 19.

Figure 9. Growth rate of three-dimensional perturbation of unstable con-
figuration of Figure 8 [9].
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(a) Streamlines (Ri = 8, Nh/U = 0.1).
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(b) Richardson number field perturbations (contours for quantity

(Ri - Rio)/Ri o at intervals of 0.05).

Figure 10. Stratified shearing flow over an obstacle (small disturbance
of height h) and corresponding perturbations of Richardson
number field.
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(a) Streamlines for flow of Figure lOa except that Nh/U = 3.0
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(b) Density field for flow of Figure 11a showing unstable regions

Figure II. Streamlines and density field for flows.
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Stratified shear flow over the semi-elliptical obstacle _ = 0.3 for

< =O,S

Flow over an ellipse of height h with Nh/U = 0.5.
simulation. Lower panel: analytic [10].

Upper panel:



Figure 13.
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Same as Figure 12 but for Nh/U = 0.93.
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Lower panel: analytic

PSI TIHE STEP: 300

Ox , 1250.00

OZ 500.00

o_ , _o 3000 sec

]8--

|. |a, i s. 20, _5. )o. |s. lB. *l_. so, 5_. ia. is. ?o. 75. la. is. |o. is, ioo Jo_ J laJ IS J_o,

_O,h

RHO- ! 0 T : t-IC .STEP: 300

O_ : 1250.00

r_ 580.00

Or : I0

16_

ltl._

12._

I0_

6.

tO

11

II

S. |0. t S- 20. as, Io. |S, ||. I_, |o. ||.l_,l|, 70, _, io. |s. io, |S, iool|s| iol i_ _

Figure 14. Stratified shear flow with critical level. Left-hand panel:
streamlines. Right-hand panel: density.
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Figure 15. Stratified shear flow with exponentially decreasing speed.
Left-hand panel: total horizontal velocity. Right-hand
panel: vertical velocity.
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Simulation Of conditions under which CAT-encounter occurred.
Regions of Ri < 1 are hatched.
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